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Abstract: Researchers have developed various methods and tools for nondestructively testing urban
trees for decay and stability. A general review of these methods includes simple visual inspection,
acoustic measuring devices, microdrills, pull testing, ground penetrating radar, x-ray scanning,
remote sensing, electrical resistivity tomography and infra-red thermography. Along with these
testing methods have come support literature to interpret the data.
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1. Introduction

Trees within an urban community provide significant ecological, economic and social benefits,
making a city more livable and comfortable for its inhabitants [1]. However, as large physical wooden
structures in close proximity to dense populations of people and property, tree failure can cause
harm. Urban forest managers use biological and engineering principles to determine a tree’s structural
soundness and estimate the probability of failure. Nondestructive testing (NDT) methods by locating
and quantifying wood decay and defect are used to measure the physical condition of trees within the
urban forest to promote public safety and property protection. These methods are of special value to
the urban forest managers and arborists responsible for the general safety of city residents, roadway
transportation and utility corridors. Nondestructive testing methods used in the urban forest include
visual examinations; acoustic methods of sounding, stress wave timers and multi-sensor tomography;
microdrill resistance testing; ground penetrating radar; static and dynamic pull testing; CT X-ray;
aerial remote sensing including drones [2–4]; electrical resistivity tomography (ERT); and infra-red
thermography (IRT).

2. Visual

Visual inspection when combined with knowledge of tree biology and biomechanics can provide
indications of a tree’s internal wood condition and predictions of failure [5]. A tree’s growth is
responsive to its environment. It is a self-optimizing, mechanical structure. To allow uniform
mechanical stress over its entire surface, additional wood is laid down over decayed or damaged areas.
Thus, trunk bulges, wound wood, or extreme lower trunk flair at the root collar area can indicate
concealed cavities, cracks or decay. Crown retrenchment, fungal conks or open cavities are further
visual evidence of decay and structural defects. Visual inspections for tree stability evaluation are
limited. Various nondestructive testing tools are available to urban forest managers to “see inside”
trees, allowing them to make better decisions.
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3. Acoustic

Mechanical sounding is a well-established forestry method of tapping a tree trunk with a wooden or
rubber mallet and listening for the tell-tale drumming response indicating an interior hollow. This results
from the sound wave attenuating or flattening as it progresses across a hollow transverse trunk section [6–8].

Acoustic stress wave timers are electronic portable tools that employ the principle that sound waves
travel through wood at differing velocities depending upon density [9]. In addition, internal obstructions
such as cracks or cavities will increase the perceived time of flight of impact-induced stress waves as they
travel across the diameter of a tree trunk. Stress wave timers are used on standing trees in the urban
forest as a simple nondestructive tool to determine the internal condition of the diameter path within the
transverse section tested [10]. Stress wave timers consist of two accelerometers attached to nails, screws or
spikes with a shallow wood connection just beyond the bark placed on opposite sides of the trunk or limb
being sampled (Figure 1). The accelerometers are connected by electric cables to a main electronic circuit
board designed to display, like a stopwatch, the time in microseconds for an impact-induced stress wave
to travel from the start accelerometer to the receiving one across the trunk or limb wood. That number
is then divided by the number of inches or centimeters in the diameter travel path to determine the
time-of-flight per measurement units travelled. If one knows the expected time-of-flight of the species
sampled, a comparison can be made to make a judgement regarding tree structural condition [11,12].
Figure 2 shows the field use of a Fakopp Microsecond Timer in testing a large maple tree on the University
of Wisconsin Madison campus.
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The use of stress waves to detect tree defects and decay is based on the observation that sound
waves’ movement through wood is directly related to the physical and mechanical properties of wood.
Stress waves travel slower in decayed or deteriorated wood than sound wood. On hardwood trees
such as oak and maple, one can expect a stress wave time of flight across the diameter to be from
18–22 µs/in. (7–9 µs/cm). Numbers higher than that indicate an obstruction interfering with the passage
of the sound wave. This could be a crack, a cavity, or decay. On softwood trees with lower wood
density, such as spruce, pine or hemlock, the stress wave will take a longer time, often producing
numbers in the 25–30 µs/in. (10–12 µs/cm) range. The stress wave timer is a qualitative tool indicating
either solid wood or a problem requiring further quantitative investigation to determine the location
and extent of the problem.

4. Multi-Sensor Acoustic

Multi-sensor acoustic instruments are available [13] using the same principle as the single-path
stress wave timer but employing as many as twelve accelerometers or more, spaced around the trunk
circumference to create a matrix of measurements with results processed by computer projection
software and displayed visually as a tomograph (Figure 3). Each of the accelerometers has a turn to
serve as the sending one and the computer measures the time of flight to each of the other accelerometers.
That information is processed by a field computer creating a computed tomography representation
of the varying stress wave velocities across the trunk slice or transverse section measured. It is a
self-calibrating scale showing multiple colors representing quadrants of perceived change in density
from most dense to least. In interpreting test results, it is important to know that the tomograph picture
is not a precise representation of the exact location and area of any internal defect but rather a display of
the measured changes in sound velocity across the transverse section. A crack, for example, might cause
a sound wave shadow larger than the actual defect. With careful interpretation, however, the acoustic
tomographic tool can assist in gauging the extent, type and approximate location of the defect and the
amount of remaining solid wood [14–18].Forests 2020, 11, x FOR PEER REVIEW 4 of 9 
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5. Microdrill Resistance Tools

Microdrill resistance tools are a nondestructive quantitative method of displaying changes in
wood density related to decay and cracks. Using a hand-held portable drill, a needle-like drill bit
is projected into the trunk. Its torque and/or thrust resistance is measured as it passes through
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the wood and is displayed on graph paper or a computer screen. Changes in amplitude on the
graph reveal wood density variance and the size of internal decay pocket relative to the cross-section
(Figure 4). The method and tool was developed by Frank Rinn as a graduate student at the University
of Heidelberg [19] and further refined in subsequent years [20–22].
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6. Pull Testing

Gunter Sinn, German landscape architect, began working with Lothar Wessolly at the University
of Stuttgart, Germany to investigate wind load simulation by pulling on urban tree trunks to create
precisely measured static loads and movement response as a means to estimate structural stability and
potential for uprooting [23]. The term Static Integrated Assessment (SIA) was used by Wessolly and
Erb in their books [24,25] to describe a comprehensive method for predicting urban tree uprooting
using static load tests. The tests require a rope or strap to be attached to the subject tree’s upper
crown attached to a winch with a dynameter or force meter measuring the amount of force exerted.
An inclinometer records uprooting reaction and elastometers measure the elastic properties of the
wood under load [26–29].

Methods of dynamic testing have also been researched, monitoring tree movement during wind
events with inclinometers and elastometers but avoiding pulling on the tree trunk with ropes and
winches [30,31]. The practicality and best methods for pull testing in the urban areas has generated
debate. [32,33]

7. Ground Penetrating Radar

Radar was developed in the period around World War Two. The term Radar, first used in 1940, is an
acronym for “radio detection and ranging.” It uses radio waves to determine the range, angle or velocity
of objects. A radar system consists of a transmitter producing electromagnetic waves, an antenna
transmitting those waves, a receiving antenna and a processor to analyze the results. When the
transmitted radar signals come in contact with an object, they are reflected back to the receiving antenna
allowing the processor to determine the object’s location in the space being observed. Radar’s most
common use in the urban forest is underground root detection. The transmitting antenna is pulled
along the ground level with the radar signals reflected primarily off the moisture in roots allowing the
processor to estimate the location of roots along a predetermined soil depth [34]. The method has been
successfully employed by researchers investigating the distribution and infrastructure impact of roots
within the urban forest [35,36]. Examinations of living tree trunks using ground penetrating radar
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(GPR) has shown that accuracy is affected by tree diameter and regularity of shape. Small diameter
and irregularly shaped trees adversely affected the accuracy of GPR [37]. Innovation in GPR ouput
interpretation has resulted in the ability to distinguish between moisture pockets and voids [38,39].
Ongoing research is further refining the usage of GPR to find wood rot [40].

8. X-ray CT Scan

X-ray computed tomography (CT) scanning is a nondestructive testing method providing
three-dimensional information about the internal inhomogeneous structure of sampled items. The CT
method, developed by A.M. Cormack and G.N. Hounsfield in the 1970s, is now a standard testing
method in medicine and material sciences [41]. It has a mathematical basis derived from the work of
Johann Radon (1917) [42] who demonstrated that one can reconstitute the image of an object using a
complete set of projections of relevant physical variables. CT, using ionizing radiation (x-ray or gamma
ray), relies on the physical principle of absorption of high energetic photons passing through matter.
A measurement of the lessening or attenuation of the energy source as it passes through a specimen is
used to create a map of density variations of the internal inhomogeneous structure. Because medical
scanners typically apply photon energy in the range of 25 to 150 keV, photoelectric absorption is the
main cause of attenuation. The attenuation phenomena in wood is caused mainly by the Compton
effect and is proportional to the wood’s mass density, with density variations due to the distribution of
anatomic structures and the water content in the cell walls and lumina. Arthur Holly Compton was
awarded the 1927 Nobel Prize in physics for his observation that there is a decrease in energy (i.e.,
increase in wave length) of an x-ray or gamma ray as it interacts with matter.

The degree of energy attenuation is derived subtracting the number of transmitted photons
arriving at the receiving sensor from the number generated at the initiation source. It is dependent on
the mass attenuation coefficient, the thickness of the material, and the density.

The attenuation co-efficient is dependent upon the emitted energy spectra. That spectra is a
function of the applied voltage, current and charge of the x-ray tubes within the scanner equipment.
Therefore, absolute coefficients from different scans cannot be compared. It is necessary to normalize
them against distilled water as an internal standard described in Equation (1).

µrel = 1000×
µmaterial − µwater

µwater − µair
(1)

The relative attenuation coefficient, µrel, is termed a Hounsfield Unit (HU) or sometimes a CT
number. It is strictly correlated with bulk density. HU = 0 represents the density of water (1.0 g/cm3)
and HU = −1000 represents that of air. HU values greater than 0 represent materials with a bulk density
greater than water.

CT images are obtained by the rotation of a radiation source and detectors around the specimen.
Attenuation coefficients are converted into density data as displayed as images of the sample coded by
color or a 256 unit gray scale. CT scanning has been shown to be an accurate measurement of wood
density [43–45]. The technology is used for quality control of wood products and in measuring internal
characteristics of sawmill logs to guide milling for maximum value.

A mobile CT apparatus was developed in Germany [46] that provided both research and urban
forest hazard tree analysis functions. The drawback for its expanded use is that it used gamma ray
with a source of radioactive isotope cesium and had a low spatial resolution. The development of
mobile CT scan equipment using X-ray tubes as an energy source has applicability for field use by
urban foresters [47].

9. Remote Sensing

Satellite imagery and aerial remote sensing technologies, particularly hyperspectral and lidar,
are advancing in data gathering capabilities and resolution, creating additional opportunities for
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nondestructive testing of the urban forest [48]. The increasing use of aerial drones plus software
advances also present reductions in cost and ease of use in arboriculture [49,50].

10. Electric Resistivity Tomography and Infra-Red Thermography

Wood decay affects both wood moisture and electrolyte content properties in standing trees.
Both properties can be measured by electric resistivity creating the opportunity with electrical resistivity
tomography tools to determine the presence and extent of internal decay [51]. Damaged or abnormal
tree tissue such as wood deterioration or void can also be detected based on the measured thermal
difference using an infra-red camera [52]. Defects affect the internal energy flow leading to surface
temperature differences.

11. Applying Information Gathered by Nondestructive Testing

Protocols for combined use of NDT tools and methods have been developed for efficient application
in the urban forest. Nondestructive testing methods and tools provide extensive information on the
internal inegrity of trees. The job of analyzing and applying this new information belongs to the
urban foresters assigned the duty of safety management of these often massive tree structures in close
proximity to building, roads and people. The International Society of Arboriculture has significantly
advanced the science and practice of assessing tree stability and risk with the publication of “Tree Risk
Manual” [53] and the development of a Tree Risk Assessment Qualification program to train and certify
arborists in performing such assessments. The program comes with the caveat that it is impossible to
eliminate all risk associated with trees. Nonetheless, the science of tree stability analysis makes an
important contribution to not only public safety but also our enjoyment of trees by providing, if not a
perfect, at least an improved method to measure tree stability, thus increasing our comfort level in the
urban and landscape forest.

12. Concluding Remarks

The term non-destructive evaluation is a term well established in the wood science research
literature [54–56], representing “the process by which selected physical properties of a material
is being tested without damage or alteration to its end-use capabilities.” It could be argued that
micro-drill testing, acoustic testing, and electrical resistivity tomography create wounds in the bark or
wood and that even tensioning with static/dynamic pull testing could stretch or rupture wood fibers.
However, generally speaking, these and other techniques in this review leave the tested tree without
significant damage or alteration to its end use and are generally recognized as non-destructive evaluating
techniques in the urban forest. Of these techniques, visual inspection, single path and multi-sensor
acoustics, micro-drill resistance tests and static/dynamic pulling tests are the most commonly used
by arborists and urban forest managers. The equipment costs are within the practitioners’ budget
range, the science is well understood and there are multiple manufacturers and equipment distributors.
The development and use of nondestructive test tools and methods have significantly improved the
well-being of the urban forest and its inhabitants.
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